	Fa	Tanta University culty of Engineer Third year Full mark: 90	ng ة حديثة	bject: Ecc Fin Tir لائد	onomic operation of j al examination 2008 ne allowed: Three I Date: 18/1/2009	power systems 2009 nours	TANK TUNIVES	
(1-a)	What is the	lifference betwe	en soft and hard	constra	ints? Give examp	les of each t	type and	
	mention the in	mportance of the	constraints in the	operatio	on of the power sys	stem. (7 m	ark)	
(1-b)	The input fue	el in (Btu/h) for	a power plant w	ith min.	and max. power	of 20 and 1	00 MW	
	respectively is	s given by: F=(5	$0+4*P+0.015*P^2$	*10 ⁶ , wl	here P is the gener	ated power in	n (MW).	
	Plot the input	output curve o	f the plant. Calcu	late the	heat rate and plot	its curve ag	ainst the	
	output power	. Assuming a fu	el cost of 0.15*10) ⁻⁶ \$/Btu	, calculate the inc	remental fue	l cost in	
	\$/MWh and p	lot its curve aga	inst the output pov	ver		(7 m	ark)	
(1-c)	Draw the flow	w chart to obtai	n the solution of	the econ	nomic dispatch pro-	oblem negled	cting the	
	system losses					(7 m	ark)	
(2-a)	Choose the be	est answer:				(3 marks eac	ch)	
	(i) The diver	sity factor for a l	arge number of lo	ads may	be in the range of	:		
	a) 1.0	b) 1.02	c) 1	.1	d) 1.5	e) 2		
	(ii) The capac	ity factor can be	used to calculate					
	a) averag	ge demand	b) rated capacity	d) r	naximum demand	e) connec	ted load	
	(iii) Reserve p	ower can be ob	ained from:					
	a) standb	y units and boil	ers b) speed g	overnor	c) valve positi	on d) bo	oilers	
	(iv) The load	factor of a powe	er station having a	maximu	m power of 25M	W, connected	1 load of	
	50MW an	d an average de	nand of 15MW is	:				
	a) 1.667	b) 0.6	c) 0.3	d) 1	.33 e) 2	f) 0.5		
(2-b)	The initial inv	vestment value of	of an equipment w	ith a life	e time of 25 years	is 1 million	L.E. and	
	its salvage va	lue is 0.2 millio	on L.E. After ten	years, a	fire damaged the	equipment, v	where its	
	salvage value was 10000 L.E. The owner purchased a new equipment for 1.1 million L.E. If							
	the owner use	es the diminishing	ng-value method	of depre	ciation, find the to	tal additiona	l money	
	that the owner	r has to pay to p	urchase the new ed	quipmen	t.	(7 m	ark)	
(2-c)	A company u	ses the sliding-se	cale tariff method,	where e	ach kilowatt hour	costs 0.1 LE	. In	
	addition, the o	customer has to	pay a penalty if the	e power	factor is lower tha	n 0.85. The p	enalty	
	is defined as :	500 LE multiplie	d by the difference	e betwee	en the critical and	the actual por	wer	
	factor. Calcul	ated the total co	st of the consumed	l energy	in the following ca	ases: (a) the t	otal	
	consumed ene	ergy 1s 1000 kW	h at a power facto	r of 0.72	and (b) the total co	onsumed ene	rgy is	
	1200 KWh at	a power factor o	1 U.82.			(/m	ark)	
			Р.Т	.0.				

L

(3-a)	The incremental fuel costs in \$/MWh for a plant consisting of three units are give	en by:
	$\frac{dF_1}{dP_1} = 0.015P_1 + 3.4$, $\frac{dF_2}{dP_2} = 0.018P_2 + 2.6$ and $\frac{dF_3}{dP_3} = 0.01P_3$. Calculate the saving	g in \$ in the
	case of a load demand of 800 MW when the optimal dispatch is used compared to	o distributing
	the load equally between the three units. The minimum and maximum loads on each	ach unit are
	respectively 100 and 300 MW.	(7 mark)
(3-b)	The incremental fuel costs in \$/MWh for 3 generating units are given as: $\frac{dF_1}{dP_1} = 0$	$.009P_1 + 3.5$,
	$\frac{dF_2}{dP_2} = 0.012P_2 + 3$ and $\frac{dF_3}{dP_3} = 0.008P_3 + 3.6$. The minimum and maximum loads of	on each unit
	are respectively 100 and 350 MW and the load demand is 800 MW. The loss form	nula is given
	as: $P_{loss} = 0.00014 P_1^2 + 0.00008 P_1 \cdot P_2 + 0.00009 P_2^2 + 0.0001P_3^2 + 0.00012 P_2 \cdot P_3$	3, where P is
	in MW. Find the optimal load allocation among the generators using only two iter	<u>rations</u> . Start
	with a lagrange multiplier value of 6 and penalty factors of unity.	(7 mark)
(4-a)	Classify steam power plants with all possible ways and mention the losses in each	n part showing
	how can you calculate the efficiency of each part.	(8 mark)
(4-b)	Mention in details the main parts of the hydroelectric power plants and explain t	he function of
	each part.	(7 mark)
(4-c)	Discuss the advantages and disadvantages of nuclear power plants.	(7 mark)
4-d)	Discuss the main reasons of using the renewable energy sources as an alte	rnative to the
	conventional centralized power stations and compare between fuel cells and w	ind turbine as
	renewable energy sources.	(7 mark)
	Good Luck	
	(Dr. Ahmed Refaat Azmy et al)	

بسم الله الرحمن الرحيم *لا اله الا الله محمد رسول الله

جامعة طنطا – كلية الهندسة بسبرباي قسم هندسة القوى والألات الكهربية الفرقة: التالئة امتحان الفصل الدراسي الأول ٢٠٠٩/٢٠٠٨ م مقرر "الآت كهربية (٣)" الزمن ١٨٠دقيقة التاريخءالخميس ٢٠٠٩/١/٢٩م النهاية العظمي: ١٣٠درجة

Ansawer all the quistions

1.a)Describes the construction of single-phase and three three-phase power transformers.

.b) For a real transformer has the following data,

*Single-phase , core-type and has a square cross-sectio area , the turns ratio=100. Hw=Ww = 0.5m, $Ai = 0.075 \text{ m}^2$,

*No-load current =5A, secondary rated voltage = 318.198 sin(2200t/7) v

*constat design: $E_t = 25 \text{ v}, K_w = 0.27, J = 2.3 \text{ A/mm}^2$.

Determine: (1) the relative permebalty of the iron core.& (2) the rated KVA.

2.a)Explain why a leading power factor load leads to cause a rise in secodary voltage above the noload rated value?

.b)The following data per phase were obtained from short-circuit and open-circuit testes of three-phase delta/delta 150KVA, 2400v/600v, 50hz transformer;

Item	No-load	Short-circuit
Voltage (v)	600	76.4
Current (A)	3.34	20.8
Power (w)	484	754

Determine: 1- the per phase equivalent parameters refered to high-side.

2- regulation at rated load and 0.90 leading power factor.

3- transformer efficiency at full-load and 0.8 lagging power factor.

3.a)Make a comparison between a two winding transformer and the corresponding autotransformer.

.b) Three 7200/600 v, 500KVA transformers are operating in parallel from 7200 v source. The percent impedances are;

Za= 5,34 %; Zb= 6.08 %; Zc= 4.29 %

What percent of the total current is supplied by eash transformer?

4.a)What is the optimum conditions for parallel operation of transformers? What happen if any one of them is ignored?

b) Two 50KVA, 60 Hz transformers have the following voltage ratios and equivalent low-side impedances:

Transformar	Voltage ratio (v)	Reg. (ohm)	Xeq. (ohm)
A	4800 / 482	0.0688	0.1449
R	4800 / 470	0.0629	0.1634

The transformers are connected in parallel and operated from a 4800 v, 60 Hz supply. Calculate the circuilating current.

5.a) Drive the output equation of the single phase transformer design.

.b) Design a three-phase power transformer has the following data;

- 1000 KVA, 500 Kv / 132 Kv, 50 Hz, core type.
- $B_{m}=1.4T$, $K_{w}=0.25$, $E_{t}=50$ v, current density = 2.5 A/mm², Ki=0.9
- Hw/Ww = 3, $Ai = 0.6 d^2$, $d_{ml} = 0.9d$, iron density = 7.8 g/cm³.

Not that your design will incluede:

*Transformer main dimensions.

*Windings number of turns and diametres.

*Cost of the iron core if 1.0 Kg costes 5 E.L.

Answer the following Ouestions:

- 1. (a) Explain the following terms: (i) Information capacity (ii) Thermal noise (iii) Correlated noise
 - (b) If an amplifier has a bandwidth B = 30 kHz and a total noise power N= 2x 10⁻⁷, determine the total noise power if the bandwidth increases to 50 kHz. $(K = 1.38 \times 10^{-23} \text{ Jouls / K})$
 - (c) For a nonlinear amplifier with sine wave input frequencies of 3 kHz and 5 kHz, determine the first three harmonics present in the output for each input frequency and the cross product frequencies produced for values of m and n of 1 and 2.
- 2. (a) Sketch the block diagram of integrated circuit waveform generator and explain its operation
 - (b) Sketch the block diagram of a PLL and describe how loop acquisition is accomplished with a PLL from an initial unlocked condition until frequency lock is achieved
 - (c) Determine the hold- in range for a PLL with an open loop gain of $K_L = 20$ kHz / rad
- 3. (a) Sketch the block diagram of a multiple crystal frequency synthesis and explain its operation.
 - (b) Describe the relationship between the carrier and sideband powers in an AM DSBFC wave. .
 - (c) For an AM DSBFC modulator with carrier frequency $f_c = 100$ kHz and a maximum modulating signal $f_{m(max)} = 5 \text{ kHz}$, determine
 - (i) Frequency limits for the upper and lower sidebands.
 - Bandwidth (ii)
 - Upper and lower side frequencies produced when the modulating (iii) signal is a single frequency 3 kHz.
- 4. (a) Sketch the block diagram of a high level AM DSBFC transmitter and explain its operation.
 - (b) For a receiver with IF ,RF, and local oscillator frequencies of 455 kHz,1100 kHz, and 1555 kHz, respectively ,determine
 - (i) Image frequency
 - (ii) Image frequency rejection ratio for a preselector Q = 100

(c) Determine the net receiver gain for an AM receiver with the following gains and losses: RF amplifier = 30 dB, IF amplifier = 44 dB, Audio amplifier = 24 dB, preselector loss = 2 dB, mixer loss = 6 dB, detector loss = 8 dB

Good Luck

2511/2009

unlug

Tanta University Faculty of Engineering Electrical Power and Machines Engineering Department

Third Year Final-Term Examination 2008-2009 High Voltage Engineering Allowable Time: 3 hours

Answer the following questions:

Use neat sketches and support your answers with suitable equations:

First Question:

1-a Describe Townsend's first and second ionization coefficients. How is the condition for breakdown obtained in a Townsend discharge? (3 points)

1-b Explain the Streamer theory of breakdown in air at atmospheric pressure. (3 points)

- 1-c What is Paschen's law? How do you account for the minimum voltage for breakdown under a given 'p x d' condition? (4 points)
- 1-d What will the breakdown strength of air be for small gaps (1 mm) and large gaps (20 cm) under uniform field conditions and standard atmospheric conditions? (5 points)

Second Question:

- 2-a Explain briefly the various theories that explain breakdown in commercial liquid dielectrics. (4 points)
- 2-b Explain briefly the different mechanisms by which breakdown occurs in solid dielectrics in practice. (3 points)
- 2-c State the main differences among the gas, liquid and solid dielectrics.
- 2-d Calculate the surface tension of an insulating liquid contain a globule with 1.1 μ m radius and $\varepsilon_{r2} = 1.2$ with a voltage drop of 180 volt across it. The liquid has $\varepsilon_{r1} = 2.3$ and the breakdown field strength is 488.85 kV. (5 points)

Third Question:

3-a Explain briefly the different types of rectifier circuits for producing high dc voltage.

(5 points)

(3 points)

- **3-b** What is the principle operation of a resonant transformer? How is it advantageous over the cascade connection transformers? (4 points)
- **3-c** A Cockcroft-Walton type voltage multiplier with 10 stages is constructed with capacitors of 100 nF each. If the load current is 2.5 mA and the percentage regulation is 4.2%, calculate the percentage ripple and the optimal number of stages for minimum voltage drop if the supply frequency is 50 Hz.

Standard Normal Distribution

	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
		0000	0040	0080	31(3)	0160	.0199	.0239	.0279	.0319	.0359
	0.0	,0000	0400	0478	0517	0557	.0596	.0636	.067/5	.0714	.0753
	0.1	.0398	0630	0370	0910	.0948	.0987	.1026	.1064	.1103	.1141
ţ	0.2	.0793	1017	1255	1293	1331	1368	.1406	.1443	1480	.1517
	0.3	.1173	1501	1628	1664	1700	1736	1772	.1808	.1844	.1879
	0.4	.1554	.1950	.1985	.2019	.2054	.2088	.2123	.2167	.2190	.2224
			Š 22								
S.	0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2519
	0.7	.2580	.2611	.2642	.2673	.2704	.2734	,2764	.2794	.2823	.2852
	0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
	0.9	3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
	1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
93						v		0.100	27/0	2010	2020
	1.i	.3643	.3665	,3686	.3708	.3729	.3749	.3770	.3/20	2007	4015
	1,2	.3849	.3869	.3838	.3907	.3925	.3944	. 3902	4177	4162	4177
	1.3	.4032	,4049	. 4066	.4982	. 4099	.4110	.4131	(909	1306	4310
3	1.4	.4192	.4207	.4222	.4235	,4251	,4205	.4219	1419	. 2000	4441
	1.5	.4332	. 4345	.4357	.4370	.4382	.4394	.4400		, 1140	
		1150	1100	4171	4491	4405	4505	4515	.4525	.4535	.4545
	1.6	.4402	.4403	. 4474	45.07	4501	4599	4608	.4616	.4625	.4633
	1.7	.4004	.4504	4010	1884	4671	4678	4686	.4693	.4699	.4706
	1.8	.4041	.4049	. 4000	4729	4738	4744	4750	4756	.4761	.4767
	1.9	.4713	.4719	.4720	.4788	.4793	.4798	.4803	.4808	.4812	.4817
		1.1	2								
	2 1	4821	4826	4830	.4834	.4838	.4842	,4846	.4850	.4854	.4857
	2.1	4861	4864	4868	.4871	.4875	.4878	,4881	,4884	.4887	,4890
	22	4802	4896	4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
	2.0	4918	4920	4922	.4925	.4927	.4929	.4931	.4932	.4934	. 1936
	9 5	4038	4940	4941	. 4943	.4945	.4946	.4948	. 4949	.4951	.4952

Values of $t_{\alpha_1\nu}^{\dagger}$

100

			-			
P	$\alpha = .10$	α = .05	$\alpha = .025$	α = .01	α = .005	y
1	3.078	6.314	12.706	31-821	63.657	1
2	. 1.886	2,920	4.303	6.965	9.925	1 2
3	1.638	2.353	3.182	4.541	5.841	3
4	1.533	2.132	2,776	3.747	4.604	4
5	1.476	2.015	2.571	3.365	4.032	5
6	1,440	1.943	2.447	3.143	3.707	6
7	1.415	1.895	2.365	2.998	3.499	7
8	1.397	1.860	2.306	2.896	3.355	8
9	1.383	1.833	2.262	2.821	3.250	9
10	1.372	1.812	2.228	2.764	3.169	10
11	1.363	1.796	2.201	2.718	3.106	11
12	1.356	1,782	2.179	2,681	3.055	12
13	1.350	1.771	2.160	2.650	3.012	13
14	1.345	1.761	2.145	2,624	2.977	14
15	1.341	1.753	2.131	2.602	2,947	15

wing ques ain item as many roductio , while 4 s the prol chosen it cards ar bility that nean and he mome X whose	stions: is many items a n period % of th bability em was e drawn at they a variand ent gene density	ufactured as <i>B</i> , and d). It is k ose manu- that the a defective a without are all ac- ce of bind erating function <i>f</i> able its d	by three that B as nown that if actured chosen if e, what i t replaces and dis mial dis motion to n is given $f(x) = \frac{1}{2}$ lensity fu	e factories nd C turn at 8% of the l by C are tern is defined is the prob- ment from stribution o obtain the n by: $e^{- x }$, anction is kx(1-x),	, say A , B out the sa he items p defective ective? bability the h a deck o are 4 and he mean an $-\infty < x <$ given by 0 < x < 1	and C. ame num produced o, one iter at it com f 52 play <u>3 respec</u> nd variar	It is know ber of ite by A and m is chos ne from fa ving cards tively, fin	wn that A arms (duri d B are sen at ran actory C ? s, what is nd $P(x \ge$ e random	turns ng a dom: the <u>1).</u>
ain item as many roductio , while 4 s the prol chosen it cards ar bility that nean and he mome X whose	is many items a n period % of th bability em was re drawn at they a variand ent gene density	ufactured as <i>B</i> , and d). It is k ose manu- that the s defective n without are all ac- ce of bind erating fu- truction	by three that B as nown that if actured chosen it e, what i t replaces es? comial dis mction to h is given $f(x) = \frac{1}{2}$ lensity fu	e factories nd C turn at 8% of the l by C are tern is defined tern is defined to be prob- ment from stribution o obtain the n by: $e^{- x }$, anction is kx(1-x),	, say A , B out the sa he items p defective ective? bability the h a deck o are 4 and he mean an $-\infty < x <$ given by 0 < x < 1	and C. ame num produced b, one iter at it com f 52 play <u>3 respec</u> nd variar	It is know ber of ite by A and m is chos the from fa ving cards tively; fin the of the	wn that A arms (duri d B are sen at ran actory C ? s, what is nd $P(x \ge$ e random	1 turns ng a adom: 5 5 the <u>1).</u>
he mome X whose is a rande	ent gene density om vari	erating fu y function f able its d	function to $f(x) = \frac{1}{2}$ lensity function $f(x) = \int_{0}^{1} f(x) dx$	b obtain the by: $e^{- x }$, $e^{- x }$,	the mean at $-\infty < x < x < y$ given by 0 < x < 1	nd variar ∞	nce of the	e random	
X whose	density	y function	the function is given $f(x) = \frac{1}{2}$ $f(x) = \int_{0}^{1} f(x) = \int_{0}^{1$	the by: $e^{- x }$, $e^{- x }$,	$-\infty < x < given by$ 0 < x < 1	ω			
is a rando	om vari	f able its d	$f(x) = \frac{1}{2}$ lensity function $f(x) = \begin{cases} 1 \\ 1 \end{cases}$	$e^{- x },$ inction is $kx(1-x),$	$-\infty < x <$ given by 0 < x < 1	αQ			
is a rando	om vari	able its d	L^{2} lensity fu $f(x) = \begin{cases} L^{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	inction is $kx(1-x)$,	given by $0 < x < 1$				
is a rando	om vari	able its d	lensity fit $f(x) = \begin{cases} 1 \\ 1 \end{cases}$	inction is $kx(1-x)$,	given by $0 < x < 1$				
			1	0,	otherwis	ie ie			
Find the Find the) Find P	value c e cumul (x<0.2)	of k . lative dis	tribution	function>	>				
ve a forn tion.	nula for	the mea	n, varian	ce and mo	oment ger	nerating l	function f	for the Po	oisson
~ N (µ, e	σ^2), suc	ch that P	(µ-kσ ≤.	x ≤µнko)	= <i>0.823</i> ;	find the	value of <i>i</i>	<i>k</i> .	
probabil probabil	ity that lity that	a student	t pilot pa ent will p lents on a	asses the v bass the te a midterm	written tes st on the examinat	t for a pr third try. tion (X) :	ivate pilo and on th	ot license	e is 0.7
ation (Y)	are as	follows:				~ ~ /			
rm (X)	77	50	71	72	81	94	96	99	67
(Y)	82	66	78	34	47	85	99	99	08
	robabi rads of ion (Y) n (X)) oute the the lin	robability that rads of a class ion (Y) are as n (X) 77) 82 oute the correlation the linear precondent of the final	robability that the stud- rads of a class of 9 stud- ion (Y) are as follows: n (X) 77 50 () 82 66 oute the correlation coe- the linear prediction ec- mate the final examinat	robability that the student will p rads of a class of 9 students on a ion (Y) are as follows: $\begin{array}{r c c c c c c c c c c c c c c c c c c c$	robability that the student will pass the to rads of a class of 9 students on a midterm ion (Y) are as follows: $\frac{n(X)}{2} \frac{77}{50} \frac{50}{71} \frac{72}{72}$ bute the correlation coefficient. the linear prediction equation. mate the final examination grade of stude	robability that the student will pass the test on the rads of a class of 9 students on a midterm examination (Y) are as follows: $\frac{n(X)}{2} = \frac{77}{50} = \frac{71}{72} = \frac{81}{34}$ oute the correlation coefficient. The linear prediction equation.	robability that the student will pass the test on the third try. rads of a class of 9 students on a midterm examination (X) ion (Y) are as follows: $\frac{n(X)}{2} \frac{77}{50} \frac{71}{72} \frac{72}{81} \frac{94}{94}$ $\frac{77}{50} \frac{71}{78} \frac{72}{34} \frac{81}{47} \frac{94}{85}$ oute the correlation coefficient. the linear prediction equation. mate the final examination grade of student who received a	robability that the student will pass the test on the third try. rads of a class of 9 students on a midterm examination (X) and on th ion (Y) are as follows: $\frac{n(X)}{277} \frac{50}{50} \frac{71}{72} \frac{72}{34} \frac{81}{47} \frac{94}{85} \frac{96}{99}$ oute the correlation coefficient. the linear prediction equation. mate the final examination grade pf student who received a grade of	robability that the student will pass the test on the third try. rads of a class of 9 students on a midterm examination (X) and on the final ion (Y) are as follows: $\frac{\mathbf{n}(X)}{9} = \frac{77}{50} = \frac{50}{78} = \frac{71}{34} = \frac{72}{47} = \frac{81}{94} = \frac{94}{96} = \frac{99}{99}$ oute the correlation coefficient. the linear prediction equation. mate the final examination grade pf student who received a grade of 85 on the

[4] (a) A machine is producing metal pieces that are cylindrical in shape, a sample of pieces is taken and the diameters are 1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, 1.03 centimeters, find a 95% confidence interval for the mean diameter of pieces from this machine.

(b) All boxes of a certain type of coffee indicate that they contains 21 grams of coffee, a government agency receives many consumer complaints that the boxes contain less than 21 grams. To check the consumer complaints at the 5% level of significance, the government agency buys a sample of 100 boxes of this coffee and finds that the sample mean is 20.5 grams with a standard deviation of 2 grams. Should the government agency order the seller to put more coffee into its boxes?

(c) If we have a finite population of five observations 3, 5, 7, 9, 11; find the sampling distribution of the mean if we draw a random sample of size 3.

18 Marks

20-1-2009

Answer the following questions:	(Maximum degree 70)
الزمن : ثلاث ساعات يناير ٢٠٠٩	امتحان الفصل الدر اسي الأول للعام الجامعي ٢٠٠٩/٢٠٠٨
المادة : أسس التحكم الألي (جديد)	قسم هندسة الحاسبات والتحكم الآلي
الفرقة الثالثة قسم هندسة القوى الكهربية	جامعة طنطا - كلية الهندسة

<u>Q(1)</u>: For the mechanical system shown, find the transfer function $X_1(S)/F(S)$.(9 degree)

Q(2): [a] The characteristic equations of linear control systems are given below. Apply Routh-Hurwitz criterion to determine the root distribution and the system stability. (10 degree)

> 1- $s^{5} + 8s^{4} + 2s^{3} + 4s^{2} + 2s + 4 = 0$ 2- $s^{5} + s^{4} + 2s^{3} + 2s^{2} + 3s + 5 = 0$ 3- $s^{6} + s^{5} + 2s^{4} + s^{3} + 3s^{2} + 2s + 2 = 0$

[b] Using signal flow graph, find the transfer function of the system Y(s)/R(s) and Y(s)/E(s). (13 degree)

<u>Q(3)</u>: For positive values of K, plot the root locus for unity feedback control system having the following open-loop transfer function $G(s) = \frac{K}{s(s+3)(s^2+2s+2)}$.

For what values of gain K does the system become unstable? Find also the value of k at which the damping ratio is $0.5 \cdot (\underline{12 \text{ degree}})$

Q(4): [a] For the system that have the following transfer function

$$\frac{Y(s)}{z} = \frac{(s+3)(s+4)}{z}$$

$$U(s) = s(s+1)(s^2 + 3s + 5)$$

Give the state space in pole-zero form and in controllable form. (9 + 3 degree)[b] (i) For the following

$$\therefore$$
 $\int 0$ 1 $\int \int 0$

$$\frac{\dot{X}}{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \underbrace{X}_{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \underbrace{X}_{x}$$

(ii) Determine whether the given system in (b-i) is stable, completely state controllable, and observable or not. (5 degree) Q(5): Given a system described by the dynamic equations

 $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{c}\mathbf{x}(t)$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ and } c = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

(i) The characterstic equation. (3 degree)

(ii) Find the transfer function Y(s)/U(s). (3 degree)

مع أطيب الأمنيات بالتوفيق

अ हे र ज्र प

(1-a)	Tanta University Faculty of Engincering Third year Full mark: 90	Subject: Economic operation of power systems Final examination 2008-2009 Time allowed: Three hours Date: 18/1/2009
(1-b) (1-c)	what is the difference between soft at mention the importance of the constraint. The input fuel in (Btu/h) for a power respectively is given by: $F=(50+4*P+0.0)$ Plot the input-output curve of the plant. output power. Assuming a fuel cost of (\$/MWh and plot its curve against the output Draw the flow chart to obtain the solution system losses.	nd hard constraints? Give examples of each type a ts in the operation of the power system. (7 mark) plant with min. and max. power of 20 and 100 M ⁻¹ (15*P ²)*10 ⁶ , where P is the generated power in (MW Calculate the heat rate and plot its curve against th 0.15*10 ⁻⁶ \$/Btu, calculate the incremental fuel cost is put power (7 mark) on of the economic dispatch problem neglecting the
(2-b) T its sa the tha (2-c) A c add	 (i) The diversity factor for a large number a) 1.0 b) 1.02 (ii) The capacity factor can be used to calculate a) average demand b) rated capacity factor can be obtained from: a) average demand b) rated capacity (iii) Reserve power can be obtained from: a) standby units and boilers b) spece iv) The load factor of a power station havin 50MW and an average demand of 15MW a) 1.667 b) 0.6 c) 0.3 the initial investment value of an equipment salvage value is 0.2 million L.E. After te twage value was 10000 L.E. The owner put over the owner put to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay to purchase the new of the owner has to pay a panel. If the owner has to pay a panel. 	(3 marks each) of loads may be in the range of: c) 1.1 d) 1.5 e) 2 late: ity d) maximum demand e) connected load ed governor c) valve position d) boilers g a maximum power of 25MW, connected load of ' is: d) 1.33 e) 2 f) 0.5 with a life time of 25 years is 1 million L.E. and n years, a fire damaged the equipment, where its rchased a new equipment for 1.1 million L.E. If l of depreciation, find the total additional money equipment. (7 mark) d, where each kilowatt hour costs 0.1 LE. In
is d factor cons 1200	efined as 500 LE multiplied by the difference or. Calculated the total cost of the consumed umed energy is 1000 kWh at a power factor kWh at a power factor of 0.82. P.T.	te power factor is lower than 0.85. The penalty ee between the critical and the actual power l energy in the following cases: (a) the total c of 0.72and (b) the total consumed energy is (7 mark) O.

(3-a)	The incompare 1.6
(5 u)	The incremental fuel costs in \$/MWh for a plant consisting of three units are given by:
	$\frac{dF_1}{dF_2} = 0.015P_1 + 3.4 dF_2 \qquad dF_2$
	dP_1 $dP_2 = 0.018P_2 + 2.6 \text{ and } \frac{dP_3}{dP_3} = 0.01P_3$. Calculate the saving in \$ in the
	case of a load demand of 800 MW when the optimal dispatch is used compared to the
	the load equally between the three units. The minimum and mani-
	respectively 100 and 300 MW.
3-b)	(7 mark)
5-0)	The incremental fuel costs in MWh for 3 generating units are given as: $dF_1 = 0.000$ m as
	$\frac{dF_2}{dP_1} = 0.012P_{1/2} + 2.5$, $\frac{dF_3}{dP_1} = 0.009P_1 + 3.5$,
	$dP_2 = 0.01212 + 5$ and $\frac{D}{dP_3} = 0.008P_3 + 3.6$. The minimum and maximum loads on each unit
	are respectively 100 and 350 MW and the load demand is 800 MW.
	as: $P_{loss} = 0.00014 P_1^2 + 0.00008 P_2 P_2 + 0.00000 P_2^2$
	in MW. Find the optimal load all $r_1 = r_2 + 0.00009 P_2^2 + 0.0001P_3^2 + 0.00012 P_2 \cdot P_3$, where P is
	with a lagrange multiplier value of a
	(7 mark) (7 mark)
-a)	Classify steam power alout and
	low can you calculate the off it
b)]	Mention in details the efficiency of each part. (8 mark)
e	ach part
c) T	Discuss the advantage (7 mark)
	Discuss the advantages and disadvantages of nuclear power plants. (7 mark)
	multiple sources as an alternative to the
re	newohle -
	(7 month)
	(7 mark)
	Good Luck
	(Dr. Ahmed Refaat Azmy et al)
	write increased and have been been an approximation that a strength in the second
	Yangata Tu
	4. U. D. D. Market and Press, Market and Society an
	THAT IS THE REPORT OF THE REPORT
1	Teach and the second
1	
	22 Sector and assessing as a construction of the